The range of indecomposability of ultrafilters at successors of singular cardinals

Inbar Oren

The Hebrew University of Jerusalem

Set Theory in the United Kingdom 15, 2025

Suppose ${\mathcal U}$ is an ultrafilter over an infinite cardinal $\lambda.$

Suppose $\mathcal U$ is an ultrafilter over an infinite cardinal $\lambda.$

• \mathcal{U} is uniform iff $|X| = \lambda$ for all $X \in \mathcal{U}$;

Suppose \mathcal{U} is an ultrafilter over an infinite cardinal λ .

- \mathcal{U} is uniform iff $|X| = \lambda$ for all $X \in \mathcal{U}$;
- For a cardinal $\eta < \lambda$, \mathcal{U} is η -indecomposable iff for every partition $\langle X_{\alpha} \mid \alpha < \eta \rangle$ of λ , there is an $a \in [\eta]^{<\eta}$ such that $\bigcup_{\alpha \in a} X_{\alpha} \in \mathcal{U}$.

Suppose $\mathcal U$ is an ultrafilter over an infinite cardinal λ .

- \mathcal{U} is uniform iff $|X| = \lambda$ for all $X \in \mathcal{U}$;
- For a cardinal $\eta < \lambda$, \mathcal{U} is η -indecomposable iff for every partition $\langle X_{\alpha} \mid \alpha < \eta \rangle$ of λ , there is an $a \in [\eta]^{<\eta}$ such that $\bigcup_{\alpha \in a} X_{\alpha} \in \mathcal{U}$.
- ullet Let us denote the indecomposability range of ${\cal U}$ by:

$$\Theta(\mathcal{U}) := \{ \eta < \lambda \mid \mathcal{U} \text{ is } \eta\text{-indecomposable} \}$$

Suppose \mathcal{U} is an ultrafilter over an infinite cardinal λ .

- \mathcal{U} is uniform iff $|X| = \lambda$ for all $X \in \mathcal{U}$;
- For a cardinal $\eta < \lambda$, \mathcal{U} is η -indecomposable iff for every partition $\langle X_{\alpha} \mid \alpha < \eta \rangle$ of λ , there is an $a \in [\eta]^{<\eta}$ such that $\bigcup_{\alpha \in a} X_{\alpha} \in \mathcal{U}$.
- ullet Let us denote the indecomposability range of ${\cal U}$ by:

$$\Theta(\mathcal{U}) := \{ \eta < \lambda \mid \mathcal{U} \text{ is } \eta\text{-indecomposable} \}$$

Remark

Notice that Indecomposability of an ultrafilter is a weakening of the notion of completeness in which a limit is guaranteed to exist only for linear intersections.

Motivation

Theorem (Ben-David and Magidor, 1986)

If κ is κ^+ supercompact then there is a generic extansion in which there is an \aleph_n -indecomposible ultrafilter on $\aleph_{\omega+1}$ for any $1 < n < \omega$.

Motivation

Theorem (Ben-David and Magidor, 1986)

If κ is κ^+ supercompact then there is a generic extansion in which there is an \aleph_n -indecomposible ultrafilter on $\aleph_{\omega+1}$ for any $1 < n < \omega$.

Remark

In the same paper, as a consequence, they showed that $\square_{\aleph_{\omega}}^*$ can be obtained. Thus, by that they showed that \square^* is weaker than \square .

Motivation

Theorem (Ben-David and Magidor, 1986)

If κ is κ^+ supercompact then there is a generic extansion in which there is an \aleph_n -indecomposible ultrafilter on $\aleph_{\omega+1}$ for any $1 < n < \omega$.

Remark

The model construction appears in [Magidor, 1977].

Theorem (Jirranttikansakul, O. and Rinot)

Let κ be a supercompact cardinal in V, then there is a forcing extension W, in which κ is inaccessible and for every singular cardinal $\lambda < \kappa$, there exists an ultrafilter on λ^+ which is θ -indecomposable for any regular $\theta \in (cf(\lambda), \lambda)$.

Theorem (Jirranttikansakul, O. and Rinot)

Let κ be a supercompact cardinal in V, then there is a forcing extension W, in which κ is inaccessible and for every singular cardinal $\lambda < \kappa$, there exists an ultrafilter on λ^+ which is θ -indecomposable for any regular $\theta \in (cf(\lambda), \lambda)$.

Remark

Then W_{κ} (i.e. V_{κ}^{W}) is a model of ZFC in which for every singular cardinal λ , there exists is an ultrafilter on λ^{+} which is θ -indecomposable for any regular $\theta \in (cf(\lambda), \lambda)$.

Corollary

Assuming there is a model of ZFC with a supercompact cardinal, then there is a model of ZFC, in which on every successor of a singular cardinal, λ^+ , there is a uniform ultrafilter \mathcal{U}_λ such that $\Theta(\mathcal{U}_\lambda) = (\mathsf{cf}(\lambda), \lambda)$.

Corollary

Assuming there is a model of ZFC with a supercompact cardinal, then there is a model of ZFC, in which on every successor of a singular cardinal, λ^+ , there is a uniform ultrafilter \mathcal{U}_λ such that $\Theta(\mathcal{U}_\lambda) = (\mathsf{cf}(\lambda), \lambda)$.

Theorem (Usuba, 2025)

Let κ be a singular cardinal, and $\mathcal U$ a uniform ultrafilter over κ^+ . If $\mathcal U$ is κ -indecomposable, then there is a cardinal $\eta < \kappa$ such that for every $\mu \in (\lambda, \kappa)$ regular $\mu \notin \Theta(\mathcal U)$.

Corollary

Assuming there is a model of ZFC with a supercompact cardinal, then there is a model of ZFC, in which on every successor of a singular cardinal, λ^+ , there is a uniform ultrafilter \mathcal{U}_λ such that $\Theta(\mathcal{U}_\lambda) = (\mathsf{cf}(\lambda), \lambda)$.

Theorem (Usuba, 2025)

Let κ be a singular cardinal, and $\mathcal U$ a uniform ultrafilter over κ^+ . If $\mathcal U$ is κ -indecomposable, then there is a cardinal $\eta < \kappa$ such that for every $\mu \in (\lambda, \kappa)$ regular $\mu \notin \Theta(\mathcal U)$.

Remark

By Usuba's proposition, it is impossible to get \mathcal{U} on λ^+ such that $(\mathrm{cf}(\lambda),\lambda]\subseteq\Theta(\mathcal{U})$, hence we can't expand the range of indecomposability of \mathcal{U}_λ on λ^+ to include λ .

In order to answer this question, I want to remind you the Prikry-tree forcing. Let $\mathcal U$ be some uniform ultrafilter on κ , regular.

Definition

• Let $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ be the collection of all \mathcal{U} -trees.

In order to answer this question, I want to remind you the Prikry-tree forcing. Let $\mathcal U$ be some uniform ultrafilter on κ , regular.

Definition

• Let $\mathbb{P}_{Tree,\mathcal{U}}$ be the collection of all \mathcal{U} -trees. A condition $T \in \mathbb{P}_{Tree,\mathcal{U}}$ is a tree $T \subseteq [\kappa]^{<\omega}$ such that there is some $t \in T$, denoted by t = Stem(T), and such that for all $s \in T$ either $s \leq_T t$ or $t \leq_T s$ and for all $s \geq_T t$ $Succ_T(s) = \{i < \kappa \mid s+ < i > \in T\} \in \mathcal{U}$.

In order to answer this question, I want to remind you the Prikry-tree forcing. Let $\mathcal U$ be some uniform ultrafilter on κ , regular.

Definition

- Let $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ be the collection of all \mathcal{U} -trees. A condition $T \in \mathbb{P}_{\mathit{Tree},\mathcal{U}}$ is a tree $T \subseteq [\kappa]^{<\omega}$ such that there is some $t \in T$, denoted by $t = \mathit{Stem}(T)$, and such that for all $s \in T$ either $s \leq_T t$ or $t \leq_T s$ and for all $s \geq_T t$ $\mathit{Succ}_T(s) = \{i < \kappa \mid s + < i > \in T\} \in \mathcal{U}$.
- We say that $S \leq T$ iff $S \subseteq T$.

In order to answer this question, I want to remind you the Prikry-tree forcing. Let $\mathcal U$ be some uniform ultrafilter on κ , regular.

Definition

- Let $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ be the collection of all \mathcal{U} -trees. A condition $T \in \mathbb{P}_{\mathit{Tree},\mathcal{U}}$ is a tree $T \subseteq [\kappa]^{<\omega}$ such that there is some $t \in T$, denoted by $t = \mathit{Stem}(T)$, and such that for all $s \in T$ either $s \leq_T t$ or $t \leq_T s$ and for all $s \geq_T t$ $\mathit{Succ}_T(s) = \{i < \kappa \mid s + < i > \in T\} \in \mathcal{U}$.
- We say that $S \leq T$ iff $S \subseteq T$.
- We say that $S \leq^* T$ iff $S \leq T$ and Stem(S) = Stem(T).

Let κ be a regular cardinal and let $\mathcal U$ be some uniform ultrafilter on $\kappa.$

Let κ be a regular cardinal and let $\mathcal U$ be some uniform ultrafilter on κ .

Remark

 $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ adds an ω sequence to κ , hence if $\kappa=\lambda^+$ it is collapsed by this forcing.

STUK 15, 2025

7/1

Let κ be a regular cardinal and let $\mathcal U$ be some uniform ultrafilter on κ .

Remark

 $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ adds an ω sequence to κ , hence if $\kappa=\lambda^+$ it is collapsed by this forcing.

Lemma

Let $T, S \in \mathbb{P}_{Tree,\mathcal{U}}$ are such that Stem(S) = Stem(T), then $S \cap T$ is a condition and $S \cap T \leq^* S, T$.

Moreover $\mathbb{P}_{Tree.\mathcal{U}}$ has the κ^+ - chain condition.

Let κ be a regular cardinal and let $\mathcal U$ be some uniform ultrafilter on κ .

Remark

 $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ adds an ω sequence to κ , hence if $\kappa=\lambda^+$ it is collapsed by this forcing.

Lemma

Let $T, S \in \mathbb{P}_{Tree,\mathcal{U}}$ are such that Stem(S) = Stem(T), then $S \cap T$ is a condition and $S \cap T \leq^* S, T$.

Moreover $\mathbb{P}_{\mathsf{Tree}.\mathcal{U}}$ has the κ^+ - chain condition.

Remark

The proof only uses the fact that $\mathcal U$ is a filter.

$\mathbb{P}_{\mathit{Tree},\mathcal{U}}$, using the indecomposability range of \mathcal{U}

Lemma (*)

Let $T \in \mathbb{P}_{Tree,\mathcal{U}}$ and $\dot{\tau}$ such that $T \Vdash \dot{\tau} < \check{\alpha}$ for α with $cf(\alpha) \in \Theta(\mathcal{U})$. Then there is $T' \leq^* T$ and $\beta < \alpha$ such that $T' \Vdash \dot{\tau} < \check{\beta}$.

$\mathbb{P}_{\mathit{Tree},\mathcal{U}}$, using the indecomposability range of \mathcal{U}

Lemma (*)

Let $T \in \mathbb{P}_{\mathsf{Tree},\mathcal{U}}$ and $\dot{\tau}$ such that $T \Vdash \dot{\tau} < \check{\alpha}$ for α with $\mathsf{cf}(\alpha) \in \Theta(\mathcal{U})$. Then there is $T' \leq^* T$ and $\beta < \alpha$ such that $T' \Vdash \dot{\tau} < \check{\beta}$.

Theorem (*)

If $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$, then $\mathbb{P}_{\mathsf{Tree},\mathcal{U}}$ preserves all regular cardinals in (ρ^+, λ) .

Sketch of the proof:

Let $\eta \in (\rho^+, \lambda)$ regular, in order to show that η is preserved we will prove that for all regular $\alpha \in (\rho, \eta)$ all stationary $S \subseteq S^{\eta}_{\alpha}$ are preserved.

Sketch of the proof:

Let $\eta \in (\rho^+, \lambda)$ regular, in order to show that η is preserved we will prove that for all regular $\alpha \in (\rho, \eta)$ all stationary $S \subseteq S_\alpha^\eta$ are preserved. Therefore, if $T \Vdash \dot{f} : \check{\mu} \to \check{\eta}$ unbounded, then we can assume that μ is the least such that.

Sketch of the proof:

Let $\eta \in (\rho^+, \lambda)$ regular, in order to show that η is preserved we will prove that for all regular $\alpha \in (\rho, \eta)$ all stationary $S \subseteq S_{\alpha}^{\eta}$ are preserved.

Therefore, if $T \Vdash \dot{f} : \check{\mu} \to \check{\eta}$ unbounded, then we can assume that μ is the least such that. Hence we can assume that

 $T \Vdash \dot{C} : \mu \to \eta \text{ is a club s.t. } \forall i \in \dot{C} \operatorname{cf}(i) < \check{\mu}.$

Sketch of the proof:

Let $\eta \in (\rho^+, \lambda)$ regular, in order to show that η is preserved we will prove that for all regular $\alpha \in (\rho, \eta)$ all stationary $S \subseteq S_{\alpha}^{\eta}$ are preserved.

Therefore, if $T \Vdash \dot{f} : \check{\mu} \to \check{\eta}$ unbounded, then we can assume that μ is the least such that. Hence we can assume that

 $T \Vdash \dot{C} : \mu \to \eta \text{ is a club s.t. } \forall i \in \dot{C} \operatorname{cf}(i) < \check{\mu}.$

Thus there is some $\alpha \in [\mu, \eta) \cap \Theta(\mathcal{U})$ and then all stationary $S \subseteq S_{\alpha}^{\eta}$ are preserved, but then $T \Vdash \dot{C} \cap S = \emptyset$, which is a contradiction.

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

 $T \Vdash \dot{C}$ is a club, and $\dot{C} \cap S = \emptyset$.

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

$$T \Vdash \dot{C}$$
 is a club, and $\dot{C} \cap S = \emptyset$.

Let $M \prec H_{\chi}$

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

 $T \Vdash \dot{C}$ is a club, and $\dot{C} \cap S = \emptyset$.

Let $M \prec H_{\chi}$ such that $|M| = \alpha$,

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

$$T \Vdash \dot{C}$$
 is a club, and $\dot{C} \cap S = \emptyset$.

Let $M \prec H_{\chi}$ such that $|M| = \alpha, T, \dot{C}, \mathbb{P}_{\mathit{Tree},\mathcal{U}} \in M$

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

 $T \Vdash \dot{C}$ is a club, and $\dot{C} \cap S = \emptyset$.

Let $M \prec H_{\chi}$ such that $|M| = \alpha, T, \dot{C}, \mathbb{P}_{Tree, \mathcal{U}} \in M$ and $\delta := \alpha \cap M \in S$.

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

 $T \Vdash \dot{C}$ is a club, and $\dot{C} \cap S = \emptyset$.

Let $M \prec H_{\chi}$ such that $|M| = \alpha, T, \dot{C}, \mathbb{P}_{Tree,\mathcal{U}} \in M$ and $\delta := \alpha \cap M \in S$. Let $\dot{\tau} := \max \dot{C} \cap \check{\delta}$.

Let $S \subseteq S^{\eta}_{\alpha}$ and T such that

 $T \Vdash \dot{C}$ is a club, and $\dot{C} \cap S = \emptyset$.

Let $M \prec H_{\chi}$ such that $|M| = \alpha, T, \dot{C}, \mathbb{P}_{Tree, \mathcal{U}} \in M$ and $\delta := \alpha \cap M \in S$. Let $\dot{\tau} := \max \dot{C} \cap \check{\delta}$.

Then by the Lemma, there is some $T' \leq^* T$ and $\gamma < \delta$ such that

$$T' \Vdash \dot{\tau} < \check{\gamma}.$$

Since $\gamma < \delta$, $\gamma \in M$,

Since $\gamma < \delta$, $\gamma \in M$, then in M: by the Lemma, there is $T^{"} \leq^* T$ and β such that

$$T^{"} \Vdash \min(\dot{C} \setminus \check{\gamma}) < \check{\beta}.$$

Since $\gamma<\delta$, $\gamma\in M$, then in M: by the Lemma, there is $T^{''}\leq^*T$ and β such that

$$T^{"} \Vdash \min(\dot{C} \backslash \check{\gamma}) < \check{\beta}.$$

Back to V:

 $T',T^{"}\leq^{*}T$, then let $\hat{T}:=T'\cap T^{"}$. Then,

Since $\gamma < \delta$, $\gamma \in M$, then in M: by the Lemma, there is $T^{''} \leq^* T$ and β such that

$$T^{"} \Vdash \min(\dot{C} \setminus \check{\gamma}) < \check{\beta}.$$

Back to V:

 $T', T^{"} \leq^{*} T$, then let $\hat{T} := T' \cap T^{"}$. Then,

$$\hat{\mathcal{T}} \Vdash \sup(\dot{\mathcal{C}} \cap \check{\delta}) = \dot{\tau} < \check{\gamma} \le \min(\dot{\mathcal{C}} \setminus \check{\gamma}) < \check{\beta} < \check{\delta}.$$

Since $\gamma < \delta$, $\gamma \in M$, then in M: by the Lemma, there is $T^{''} \leq^* T$ and β such that

$$T^{"} \Vdash \min(\dot{C} \setminus \check{\gamma}) < \check{\beta}.$$

Back to V:

 $T', T^{"} \leq^{*} T$, then let $\hat{T} := T' \cap T^{"}$. Then,

$$\hat{\mathcal{T}} \Vdash \sup(\dot{\mathcal{C}} \cap \check{\delta}) = \dot{\tau} < \check{\gamma} \le \min(\dot{\mathcal{C}} \setminus \check{\gamma}) < \check{\beta} < \check{\delta}.$$

Which is a contradiction. \square

Remark

If $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ and λ is a singular cardinal, then λ is preserved by $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$.

Remark

If $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ and λ is a singular cardinal, then λ is preserved by $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$.

Corollary

If $\kappa = \lambda^+$ and $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ then $\mathrm{cf}(\lambda) \leq \rho^+$.

Corollary

If
$$\kappa = \lambda^+$$
 and $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ then $cf(\lambda) \leq \rho^+$.

Proof.

If $G \subseteq \mathbb{P}_{\mathit{Tree}\,\mathcal{U}}$ is V generic, then

$$V[G] \models \operatorname{cf}((\lambda^+)^V) = \omega.$$

Corollary

If $\kappa = \lambda^+$ and $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ then $cf(\lambda) \leq \rho^+$.

Proof.

If $G \subseteq \mathbb{P}_{\mathit{Tree}\,\mathcal{U}}$ is V generic, then

$$V[G] \models \operatorname{cf}((\lambda^+)^V) = \omega.$$

By Theorem(*), all regular cardinals in (ρ^+, λ) are preserved.

Corollary

If $\kappa = \lambda^+$ and $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ then $cf(\lambda) \leq \rho^+$.

Proof.

If $G \subseteq \mathbb{P}_{Tree,\mathcal{U}}$ is V generic, then

$$V[G] \models \operatorname{cf}((\lambda^+)^V) = \omega.$$

By Theorem(*), all regular cardinals in (ρ^+, λ) are preserved. Then, by a theorem of Shelah we get that since λ^{++} is preserved, then $V[G] \models \operatorname{cf}(|(\lambda^+)^V|) = \check{\omega}$.

Corollary

If $\kappa = \lambda^+$ and $(\rho, \lambda) \subseteq \Theta(\mathcal{U})$ then $\mathrm{cf}(\lambda) \leq \rho^+$.

Proof.

If $G \subseteq \mathbb{P}_{Tree,\mathcal{U}}$ is V generic, then

$$V[G] \models \operatorname{cf}((\lambda^+)^V) = \omega.$$

By Theorem(*), all regular cardinals in (ρ^+, λ) are preserved. Then, by a theorem of Shelah we get that since λ^{++} is preserved, then

$$V[G] \models \operatorname{cf}(|(\lambda^+)^V|) = \check{\omega}$$
. Thus $\operatorname{cf}(\lambda) \leq \rho^+$. \square

Remark

If ρ^+ is preserved by $\mathbb{P}_{Tree,\mathcal{U}}$, then for all $g:[\lambda^+]^{<\omega}\to \rho^+$, there is $T\in\mathbb{P}_{Tree,\mathcal{U}}$ such that $|g^{"}T|<\rho^+$.

Remark

If ρ^+ is preserved by $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$, then for all $g:[\lambda^+]^{<\omega}\to \rho^+$, there is $T\in\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ such that $|g^{''}T|<\rho^+$.

This property holds for \mathcal{U}_{λ} , the indecomposables on λ^+ in the joint work with Sittinon Jirrattikansakul and Assaf Rinot, as well as the Ben David Magidor ultrafilter on $\aleph_{\omega+1}$.

Remark

If ρ^+ is preserved by $\mathbb{P}_{\mathit{Tree},\mathcal{U}}$, then for all $g:[\lambda^+]^{<\omega}\to \rho^+$, there is $T\in\mathbb{P}_{\mathit{Tree},\mathcal{U}}$ such that $|g^{''}T|<\rho^+$.

This property holds for \mathcal{U}_{λ} , the indecomposables on λ^+ in the joint work with Sittinon Jirrattikansakul and Assaf Rinot, as well as the Ben David Magidor ultrafilter on $\aleph_{\omega+1}$. The conjecture, that this is the case for all ultrafilters with such indecomposable range is currently under progress.

Thank You!