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Definition

Suppose 𝒰 is an ultrafilter over an infinite cardinal 𝜆.

𝒰 is uniform iff |X | = 𝜆 for all X ∈ 𝒰 ;
For a cardinal 𝜂 < 𝜆, 𝒰 is 𝜂-indecomposable iff for every partition
⟨X𝛼 | 𝛼 < 𝜂⟩ of 𝜆, there is an a ∈ [𝜂]<𝜂 such that

⋃︀
𝛼∈a X𝛼 ∈ 𝒰 .

Let us denote the indecomposability range of 𝒰 by:

Θ(𝒰) := {𝜂 < 𝜆 | 𝒰 is 𝜂-indecomposable}

Remark

Notice that Indecomposability of an ultrafilter is a weakening of the notion
of completeness in which a limit is guaranteed to exist only for linear
intersections.
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Motivation

Theorem (Ben-David and Magidor, 1986)

If 𝜅 is 𝜅+ supercompact then there is a generic extansion in which there is
an ℵn-indecomposible ultrafilter on ℵ𝜔+1 for any 1 < n < 𝜔.
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an ℵn-indecomposible ultrafilter on ℵ𝜔+1 for any 1 < n < 𝜔.

Remark

In the same paper, as a consequence, they showed that □*
ℵ𝜔

can be
obtained. Thus, by that they showed that □* is weaker than □.
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Remark

The model construction appears in [Magidor, 1977].
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A model for global compactness

Theorem (Jirranttikansakul, O. and Rinot)

Let 𝜅 be a supercompact cardinal in V , then there is a forcing extension
W , in which 𝜅 is inaccessible and for every singular cardinal 𝜆 < 𝜅, there
exists an ultrafilter on 𝜆+ which is 𝜃-indecomposable for any regular
𝜃 ∈ (cf (𝜆), 𝜆).

Remark

Then W𝜅 (i.e. VW
𝜅 ) is a model of ZFC in which for every singular cardinal

𝜆, there exists is an ultrafilter on 𝜆+ which is 𝜃-indecomposable for any
regular 𝜃 ∈ (cf (𝜆), 𝜆).
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A model for global compactness

Corollary

Assuming there is a model of ZFC with a supercompact cardinal, then
there is a model of ZFC, in which on every successor of a singular cardinal,
𝜆+, there is a uniform ultrafilter 𝒰𝜆 such that Θ(𝒰𝜆) = (cf(𝜆), 𝜆).

Theorem (Usuba, 2025)

Let 𝜅 be a singular cardinal, and 𝒰 a uniform ultrafilter over 𝜅+. If 𝒰 is
𝜅-indecomposable, then there is a cardinal 𝜂 < 𝜅 such that for every
𝜇 ∈ (𝜆, 𝜅) regular 𝜇 /∈ Θ(𝒰).

Remark

By Usuba’s proposition, it is impossible to get 𝒰 on 𝜆+ such that
(cf(𝜆), 𝜆] ⊆ Θ(𝒰), hence we can’t expand the range of indecomposability
of 𝒰𝜆 on 𝜆+ to include 𝜆.
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Lower bound for Θ(𝒰)?- Work in progress

In order to answer this question, I want to remind you the Prikry-tree
forcing. Let 𝒰 be some uniform ultrafilter on 𝜅, regular.

Definition

Let PTree,𝒰 be the collection of all 𝒰-trees.

A condition T ∈ PTree,𝒰 is a tree T ⊆ [𝜅]<𝜔 such that
there is some t ∈ T , denoted by t = Stem(T ),
and such that for all s ∈ T either s ≤T t or t ≤T s and for all s ≥T t
SuccT (s) = {i < 𝜅 | s+ < i >∈ T} ∈ 𝒰 .
We say that S ≤ T iff S ⊆ T .

We say that S ≤* T iff S ≤ T and Stem(S) = Stem(T ).
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General observations on PTree,𝒰

Let 𝜅 be a regular cardinal and let 𝒰 be some uniform ultrafilter on 𝜅.

Remark

PTree,𝒰 adds an 𝜔 sequence to 𝜅, hence if 𝜅 = 𝜆+ it is collapsed by this
forcing.

Lemma

Let T , S ∈ PTree,𝒰 are such that Stem(S) = Stem(T ), then S ∩ T is a
condition and S ∩ T ≤* S ,T.
Moreover PTree,𝒰 has the 𝜅+- chain condition.

Remark

The proof only uses the fact that 𝒰 is a filter.
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PTree,𝒰 , using the indecomposability range of 𝒰

Lemma (*)

Let T ∈ PTree,𝒰 and 𝜏 such that T ⊩ 𝜏 < 𝛼̌ for 𝛼 with cf(𝛼) ∈ Θ(𝒰).
Then there is T ′ ≤* T and 𝛽 < 𝛼 such that T ′ ⊩ 𝜏 < 𝛽.

Theorem (*)

If (𝜌, 𝜆) ⊆ Θ(𝒰), then PTree,𝒰 preserves all regular cardinals in (𝜌+, 𝜆).
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Preserving regular cardinals in (𝜌+, 𝜆)

Sketch of the proof:

Let 𝜂 ∈ (𝜌+, 𝜆) regular, in order to show that 𝜂 is preserved we will prove
that for all regular 𝛼 ∈ (𝜌, 𝜂) all stationary S ⊆ S𝜂

𝛼 are preserved.

Therefore, if T ⊩ ḟ : 𝜇̌ → 𝜂 unbounded, then we can assume that 𝜇 is the
least such that. Hence we can assume that
T ⊩ Ċ : 𝜇 → 𝜂 is a club s.t. ∀i ∈ Ċ cf(i) < 𝜇̌.
Thus there is some 𝛼 ∈ [𝜇, 𝜂) ∩Θ(𝒰) and then all stationary S ⊆ S𝜂

𝛼 are
preserved, but then T ⊩ Ċ ∩ S = ∅, which is a contradiction.
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Preserving regular cardinals in (𝜌+, 𝜆), Sketch

Let S ⊆ S𝜂
𝛼 and T such that

T ⊩ Ċ is a club, and Ċ ∩ S = ∅.

Let M ≺ H𝜒 such that |M| = 𝛼,T , Ċ ,PTree,𝒰 ∈ M and 𝛿 := 𝛼 ∩M ∈ S .
Let 𝜏 := max Ċ ∩ 𝛿.
Then by the Lemma, there is some T ′ ≤* T and 𝛾 < 𝛿 such that

T ′ ⊩ 𝜏 < 𝛾.
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Preserving regular cardinals in (𝜌+, 𝜆), Sketch
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Let M ≺ H𝜒 such that |M| = 𝛼,T , Ċ ,PTree,𝒰 ∈ M and 𝛿 := 𝛼 ∩M ∈ S .
Let 𝜏 := max Ċ ∩ 𝛿.
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Preserving regular cardinals in (𝜌+, 𝜆), Sketch

Since 𝛾 < 𝛿, 𝛾 ∈ M,

then in M: by the Lemma, there is T ” ≤* T and 𝛽
such that

T ” ⊩ min(Ċ∖𝛾) < 𝛽.

Back to V :
T ′,T ” ≤* T , then let T̂ := T ′ ∩ T ”. Then,

T̂ ⊩ sup(Ċ ∩ 𝛿) = 𝜏 < 𝛾 ≤ min(Ċ∖𝛾) < 𝛽 < 𝛿.

Which is a contradiction. □

Inbar Oren (HUJI) Indecomopsability range STUK 15, 2025 11 / 1



Preserving regular cardinals in (𝜌+, 𝜆), Sketch

Since 𝛾 < 𝛿, 𝛾 ∈ M, then in M: by the Lemma, there is T ” ≤* T and 𝛽
such that

T ” ⊩ min(Ċ∖𝛾) < 𝛽.
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T̂ ⊩ sup(Ċ ∩ 𝛿) = 𝜏 < 𝛾 ≤ min(Ċ∖𝛾) < 𝛽 < 𝛿.
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Which is a contradiction. □

Inbar Oren (HUJI) Indecomopsability range STUK 15, 2025 11 / 1



Limitations on Θ(𝒰)

Remark

If (𝜌, 𝜆) ⊆ Θ(𝒰) and 𝜆 is a singular cardinal, then 𝜆 is preserved by
PTree,𝒰 .

Corollary

If 𝜅 = 𝜆+ and (𝜌, 𝜆) ⊆ Θ(𝒰) then cf(𝜆) ≤ 𝜌+.

Proof.

If G ⊆ PTree,𝒰 is V generic, then

V [G ] |= cf((𝜆+)V ) = 𝜔.

By Theorem(*), all regular cardinals in (𝜌+, 𝜆) are preserved. Then, by a
theorem of Shelah we get that since 𝜆++ is preserved, then
V [G ] |= cf

(︀
|(𝜆+)V |

)︀
= 𝜔̌. Thus cf(𝜆) ≤ 𝜌+. □
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Limitations on Θ(𝒰)

Remark

If 𝜌+ is preserved by PTree,𝒰 , then for all g : [𝜆+]<𝜔 → 𝜌+, there is
T ∈ PTree,𝒰 such that |g”T | < 𝜌+.

This property holds for 𝒰𝜆, the indecomposables on 𝜆+ in the joint work
with Sittinon Jirrattikansakul and Assaf Rinot, as well as the Ben David
Magidor ultrafilter on ℵ𝜔+1. The conjecture, that this is the case for all
ultrafilters with such indecomposable range is currently under progress.
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Thank You!
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